Technical Means of Automation RC Circuits as Noise Filters

Institute of Information Engineering, Automation and Mathematics

October 18, 2016

Noise

RC Low-Pass Filter

$$V_{\text{in}} = f(t), \quad V_{\text{out}} = f(t)$$

RC Circuit as Transfer Function

Electrical Impedance

Impedance (Z in Ω) is a comprehensive expression of any and all forms of **opposition to electron flow**, including both **resistance** and **reactance**. It is a **complex** variable.

$$Z = R + iX$$

R - resistance to direct current

X - **reactance** - resistance to alternating current

Impedance of Circuit

Transient equation of circuit (same as for voltage divider).

$$V_{
m out} = rac{Z_C}{Z_R + Z_C} V_{
m in}$$

Impedance of resistor is just resistance (reactance is not present).

$$Z_R = R + jX_R = R, \quad X_R = 0$$

Impedance of capacitor is just reactance (resistance is not present).

$$Z_C = R_C + jX_C = jX_C, \quad R_C = 0$$

Impedance of Capacitor

Ohm's law for AC circuits (quantities vary in time).

$$Z_C(t) = \frac{V_C(t)}{I_C(t)}$$

Voltage across the capacitor has a harmonic waveform in AC circuit.

$$V_C(t) = A\sin(\omega t)$$

Current through capacitor.

$$I_C(t) = C \frac{dV_C(t)}{dt}$$

$$I_C(t) = C \frac{d(A\sin(\omega t))}{dt} = CA(t)$$

$$I_C(t) = C \frac{d(A\sin(\omega t))}{dt} = CA\omega\cos(\omega t)$$

Impedance of Capacitor

Impedance of capacitor from Ohm's law.

$$Z_C(t) = \frac{A\sin(\omega t)}{CA\omega\cos(\omega t)}$$

$$Z_C(t) = \frac{\sin(\omega t)}{C\omega\sin(\omega t + \frac{\pi}{2})}$$

$$Z_C(s) = \mathcal{L}\{Z_C(t)\} = \frac{\frac{s^{\omega}}{s^2 + \omega^2}}{C\omega\frac{s\sin(\frac{\pi}{2}) + \omega\cos(\frac{\pi}{2})}{s^2 + \omega^2}}$$

$$Z_C(s) = \frac{\omega}{C\omega(s \times 1 + \omega \times 0)}$$

$$Z_C(s) = \frac{1}{Cs}$$

Transfer Function of RC Circuit

In time domain.

$$V_{
m out}(t) = rac{Z_C(t)}{Z_R + Z_C(t)} V_{
m in}(t)$$

Laplace transform \rightarrow Transfer function.

$$H(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{Z_C(s)}{Z_R + Z_C(s)}$$

Transfer Function of RC Circuit

$$H(s) = rac{V_{
m out}(s)}{V_{
m in}(s)} = rac{Z_{C}(s)}{Z_{R} + Z_{C}(s)}$$
 $H(s) = rac{rac{1}{Cs}}{R + rac{1}{Cs}} = rac{1}{RCs + 1}$

Frequency domain transfer function.

$$s=j\omega$$
 $H(j\omega)=rac{V_{
m out}(j\omega)}{V_{
m in}(j\omega)}=rac{1}{RCj\omega+1}$

Amplitude vs. Frequency

Amplitude as a function of angular frequency:

Amplitude vs. Frequency

Cut-off frequency is the point where the amplitude starts to decrease rapidly with the drop-off of -20dB per decade of frequency rise. ω_c - cut-off frequency (a.k.a. corner frequency). Is also known as half power point, where:

$$|H(j\omega_c)|^2 = \frac{1}{2} \quad \text{or} \quad |H(j\omega_c)| = \frac{1}{\sqrt{2}}$$
$$|H(j\omega_c)|^2 = \frac{1}{2} = \frac{1}{1 + R^2 C^2 \omega_c^2}$$
$$\omega_c = \frac{1}{RC} \quad \text{or} \quad f_c = \frac{1}{2\pi RC}$$

Signal Gain and Loss

The **decibel** is an auxiliary unit that indicates the **ratio** of two field quantities (voltage) or energy quantities (power).

$$\textbf{Voltage gain:} \quad \textit{G}_{V} = 20 \times \log_{10} \left(\frac{|\textit{V}_{\text{out}}|}{|\textit{V}_{\text{in}}|} \right) = 10 \times \log_{10} \left(\frac{|\textit{V}_{\text{out}}|}{|\textit{V}_{\text{in}}|} \right)^{2} \quad \text{in dB}$$

Power gain:
$$G_p = 10 \times \log_{10} \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$$
 in dB, $P \approx V^2$

Task

Consider the RC low-pass filter on the figure. The input voltage $V_{\rm in}(t)$ contains useful signal (sensor reading) and noise with much higher dominant frequency $f_n=2.5kHz$. The RC circuit contains capacitor with $C=1\mu F$.

- Calculate the resistor value R, to suppress the amplitude of output voltage $V_{\rm out}(t)$ to 10% of original amplitude of $V_{\rm in}(t)$.
- Calculate the value of cut-off frequency in Hz.

